Size and Origins of Long-Range Orientational Water Correlations in Dilute Aqueous Salt Solutions.

نویسندگان

  • Eva Pluhařová
  • Damien Laage
  • Pavel Jungwirth
چکیده

Long-range ordering of water around solutes has been repeatedly invoked as the key to its biological function. Recently, it has been shown that in an 8 mM aqueous NaCl solution the orientational correlation between water molecules extends beyond 8 nm. This was interpreted as arising from ion-induced long-range effects on the water collective hydrogen-bond interactions. Each ion was suggested to affect >10 000 water molecules, leading to a picture involving nanoscopic "ordered domains". Using molecular dynamics simulations, we show that the very small long-range tail in the correlation function is caused primarily by pairs of water molecules belonging to different ions' hydration shells and can be made to practically disappear by rearranging the ionic positions. This means that the ion-induced water orientational ordering in millimolar salt solutions cannot be separated from ion-ion interaction effects, for which the Debye-Hückel screening length shrinks to less than 1 nm at physiological ionic strengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular insights in aqueous systems: from electrolyte solutions to aqueous nanoscale interfaces

The unique structure and dynamics of the water hydrogen (H)-bond network enable a multitude of structures and chemical reactions in both bulk solutions and at interfaces. The underlying molecular interactions between water and dissolved electrolytes, organic molecules, and nanoscale interfaces are difficult to study and hence not fully understood, especially when it involves interactions of len...

متن کامل

Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water.

Electrolytes interact with water in many ways: changing dipole orientation, inducing charge transfer, and distorting the hydrogen-bond network in the bulk and at interfaces. Numerous experiments and computations have detected short-range perturbations that extend up to three hydration shells around individual ions. We report a multiscale investigation of the bulk and surface of aqueous electrol...

متن کامل

Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average s...

متن کامل

Removal of Dilute Benzene in Water through Ionic Liquid/Poly(Vinyl Chloride) Membranes by Pervaporation

This paper focuses on the effects of the addition of an ionic liquid, 1-Allyl-3-butylimidazilium bis(trifluoromethane sulfonyl)imide ([ABIM]TFSI), which has a high affinity for benzene, into the poly(vinyl chloride) (PVC) membrane on the pervaporation characteristics of the removal of benzene from aqueous solutions of dilute benzene. When aqueous solutions of 100~500 ppm benzene were permeated ...

متن کامل

Hydrogen bond dynamics in aqueous NaBr solutions.

Hydrogen bond dynamics of water in NaBr solutions are studied by using ultrafast 2D IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments. The hydrogen bond structural dynamics are observed by measuring spectral diffusion of the OD stretching mode of dilute HOD in H(2)O in a series of high concentration aqueous NaBr solutions with 2D IR vibrational echo spectrosc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2017